25A Church Street, Uttoxeter, ST14 8AG. Tel: 01889 568124. Mobile: 07976 646757 www.Aspenenvironmental.co.uk

Mr Tim Growcott, Halcyon Environmental, 27 Brunel Grove, Perton, Wolverhampton. WV6 7YD.

Date: 08/12/2013

Ref: L.2156

Dear Tim,

Emissions Testing at Wessex Crystal:

I am pleased to present our report of the testing of the emissions from the caustic scrubber at Wessex Crystal in Brierley Hill on the 7th November 2013.

If you have any queries on any part of this report, please do not hesitate to contact me.

Yours sincerely, For Aspen Environmental Ltd,

Dr Geoff Buck, Director.

Emissions Testing Report: Part 1, Executive Summary:

Emissions Testing from:Caustic Scrubber at Wessex Crystal.

Permit Number:

Wessex Crystal, Unit 4, Silver End Industrial Estate, Silver End, Brierley Hill. DY5 3LA.

Halcyon Environmental, 27 Brunel Grove, Perton, Wolverhampton. WV6 7YD.

Previous Monitoring Dates:

Monitoring Date: 07/11/2013

Aspen Reference Number J.1121

Aspen Environmental Ltd, 25A Church St, Uttoxeter, Staffordshire, ST14 8AG.

Report Compiled on 8th December 2013 (v1) Prepared for Aspen Environmental Ltd by Dr G.W.Buck (Director) MCerts Registered MM 02 001 Team Leader Level 2, TE1, TE3, TE4.

Contents

		Page Number:
Part 1	Executive Summary	
Cover Shee	et	1
Contents		2
Monitoring	Objectives	3
Operating 1	Information	4
Monitoring	Deviations	4
Results		4
EA Results	Summary	5
Part 2	Supporting Information	6 - 16
Appendix	1 Personnel & Methodology	6 - 7
Site Tub Pito Site Hyo	2 Caustic Scrubber 2 Description 3 Description 4 Description 5 Description 6 Results Summary (HF) 7 Tube Flow Measurements 8 Data Sheet 8 Data Sheet 8 Drander Scrubber (tubes) 8 Drander Scrubber (tubes) 8 Description	8 - 16 8 9 10 11 12 - 13 14 - 15
Unc	certainty Calculations	16

Monitoring Objectives

Wessex Crystal at Brierley Hill are a small company which polishes cut crystal glass. The process utilises a hydrofluoric acid bath and a rinsing system. The glassware is placed into racks submerged in the acid, and hand agitated, before lifting the rack out into several water rinses. There is an overhead extraction system, which draws the fumes from the acid bath through a caustic scrubber, where the HF fume reacts with the sodium hydroxide of the scrubber to become sodium fluoride. The gaseous effluent escaping to atmosphere potentially contains some hydrogen fluoride gas, and also some small amount of sodium fluoride dissolved in water droplets. For the purposes of The Pollution Prevention & Control Act 1999, this is a Schedule B process, controlled by the Environmental Health Department of the Dudley Metropolitan Borough Council, under the Environmental Permitting (England & Wales) Regulations 2007, and DEFRA's Process Guidance Note Process Guidance Note 3/6 (04), Secretary of State's Guidance for Polishing or Etching Glass or Glass Products using Hydrofluoric Acid. The process guidance note sets the following Emission standards standardised to 273.1 K, 101.3 kPa:

Total fluoride (expressed as hydrogen fluoride) new limit for agitated acid dipping processes of 2 mg/m³ new parameter for etching and still acid dipping processes of 5 mg/m³.

Dr G Buck of Aspen Environmental Ltd visited the site on the 7th November with Mr T Growcott of Halcyon Environmental Ltd to undertake the emissions sampling for compliance with the 5 mg/m³ limit, which is applied to Wessex.

Aspen Environmental is accredited by the United Kingdom Accreditation Service (Testing Laboratory No. 2395), to undertake sampling and analysis of hydrogen fluoride to UKAS standards.

There are two c 1" holes in the plastic exhaust pipe at Wessex. The exhaust is located around the back of the shop in a lean to building, with very little operating space, which precludes the use of a method 5 sampling line. Sampling was therefore undertaken using low flow pumps to draw the sample gas through a PTFE probe (inserted into the exhaust), and through a water washed silica gel tube as specified by NIOSH method 7903.

There are no special requirements of the sampling.

Operating Information.	
Type & Description	A caustic scrubber exhaust, used to dispose of escaping hydrogen
of Process	fluoride from a glass dipping process.
	The process ran throughout the testing period.
Batch process	None.
Fuel Type & Feedstock	No fuel or feedstock is used.
Normal Load	The scrubber fan runs continuously when rinsing is in progress.
Unusual Occurrences	None
Abatement System	There is no other abatement system.
CEM system	There is no CEM system.
Process Details Collected	The production was running throughout the test.

Monitoring Deviations

All substances listed in the monitoring objectives were sampled.

There were no non compliances.

Results

The results are presented overleaf.

Wessex	Wessex Crystal, Brierley Hill Emissions Testing 2013	Brierley	, Hill						Аѕрез	Aspen Environmental Ltd	nental Ltd	The second secon
Emission Point Reference	Location	Substance Emission to be Limit Monitored Value	Emission Limit Value	Periodic Monitoring Uncertainty Result	Uncertainty	Units	Reference Conditions Date of 273 K, 1013 Sampling mb		Start & End Times	Monitoring Method Reference	Accreditation for use of Method	rccreditation for use of Operating Status Method
Caustic Scrubber Exhaust	ber Exhaust	Hydrogen fluoride as HF	5	1.46	± 4.4 %	mg/Nm³	Wet Gas	07/11/2013	Wet Gas 07/11/2013 10:11 - 12:00 EN 13649 NIOSH 7903	EN 13649 NIOSH 7903	UKAS	Normal Working
Notes Dr G.W.Buck is personally MCerted to Level 2 with Technical Endorsements 1 Aspen Environmental Ltd is a UKAS accredited Testing Laboratory No. 2395	is personally]	MCerted to L a UKAS accr	evel 2 with edited Testi	Technical Ending Laborator	dorsements y y No. 2395	TE1 (Isokinet	ic Sampling), T	E3 (Gases by	manual techniqu	Notes Dr. G.W.Buck is personally MCerted to Level 2 with Technical Endorsements TE1 (Isokinetic Sampling), TE3 (Gases by manual techniques), & TE4 (Gases by Instrumental Methods) Aspen Environmental Ltd is a UKAS accredited Testing Laboratory No. 2395	ases by Instrume	ntal Methods)

Part 2 Supporting Information

Appendix 1:

Aspen Personnel

Dr G.W.Buck MCerts Reg MM 02 001

Level 2 Team Leader TE1, TE3, TE4 (to 05/2015)

Method Statements

A1 Flow Measurement in Ducts to EN 13284-1:2002

A US "S" type pitot tube, or UK "L" type pitot tube, each individually UKAS calibrated is used to measure Velocity Pressure (Pv) at 10 points across each traverse of the stack (usually 2), as specified in EN 13284-1. Similarly the pitot is used to measure Static Pressure (Ps), and angle of flow at each of the points. Stack internal diameter is also measured.

A UKAS calibrated "K" type thermocouple system is used to measure temperature at each point above. Where isokinetic sampling is required water vapour content is also assessed. Exhaust velocity and volume flows are calculated according to the standard.

Aspen Method A1 & A5

Pressure, Temperature & Velocity in Stacks & Ducts to EN 13284-1:2002 & BS 9096:2003

Velocity & Static Pressure measuring equipment.

A UKAS calibrated UK (BS 1042) type pitot tubes (Aspen Ref 193 & 445), are used to calibrate other UK & US type pitot tubes (Aspen Refs 198, 200, 201, 236, 331, 472).

A UKAS calibrated Airflow PVM620 electronic micromanometer (Aspen Ref 501).

All pitot tubes are vacuum checked before usage.

Temperature measuring equipment.

2 UKAS calibrated thermocouples (Annually changed).

A UKAS calibrated Digitron 3208 IS thermocouple reader (Aspen Ref 328).

A3 Speciated Organic Compounds to EN 13649: 2002

Stack velocity & dimensions are usually required.

This methodology uses low flow occupational hygiene sampling pumps and NIOSH standard charcoal tubes to collect organic vapours for subsequent gas chromatography.

The pumps are set up with a stainless steel sampling probe, attached to the NIOSH tube, and a length of hose connected to the sampling pump.

The NIOSH tube consists of two beds of activated charcoal, with foam separators. Direction of flow through these tubes is critical, so they are marked with a directional arrow by the manufacturers.

The whole sampling line is checked for integrity by blocking the end of the probe, such that a change of note can be heard from the sampling pump.

The pumps are equipped with a stroke counter, which records each stroke of the diaphragm pump, and each is individually calibrated against a soap bubble in a grade A burette, so the volume drawn by each pump stroke is known.

The sample gas is drawn through the NIOSH tube for about 30 minutes. At each stage sampling data is recorded to a series of standard forms.

The UKAS analysts utilise retention time in the chromatography column to determine species, and individual peak response to quantify, such that a whole series of different analytes can be identified and quantified.

This method is only applicable for dry gas.

Aspen Method A6

Individual gases in stacks & ducts

These methods are identical to method A3, except that the sampling tubes are changed to method specific tubes.

Analyte	Tube Content	Tube Ref	Method Ref
HCl & HF	Water washed silica gel	SKC 226-10-3	NIOSH 7903
Ammonia	Acid washed silica gel	SKC 226-10-6	NIOSH 6016
Hydrogen cyanide	Soda lime	SKC 226-28	NIOSH 6010
Formaldehyde	XAD-2	SKC 226-118	NIOSH 2541
Aliphatic Amines	Silica Gel	SKC 226-15	NIOSH 2010
Aromatic Amines	Silica Gel	SKC 226-15	NIOSH 2002

Where applicable the sampling probe is water rinsed, and the rinse solution separately analysed. All analyses are carried out by UKAS accredited laboratories.

Results in all cases are presented as milligrams of analyte per Normal volume of exhaust gas sampled, without correction for water vapour.

Appendix 2: Caustic Scrubber Exhaust

Sample Locations.	
Stack base Location	Accessed from a low level platform, Sampling point about 3 m above ground Two 1" holes.

C	Current Measurements for Flow Criteria
Pitot Tube Traverse	Vertical Duct. Pv: 54, 52, 50, 55, 54, 54, 52, 54, 56, 42. Pa Ps: -96, -95, -96, -98, -86, -98, -100, -100, -96, -98. Pa Temperature 10 ° C across.
Moisture & Homogeneity	Moisture: Not required data presented as wet gas. Homogeneity – Not Required (Stack diameter < 1.13 m)

Wes	Wessex Crystal, Brier	ryst	al, Bi	Wessex Crystal, Brierley Hill	rley Hill	(2013)			7	Aspen	Envi	Aspen Environmental Ltd	tal Ltd	
			Volum	Volume Counter		Temper	Temperature ° C	Sample Volume	Johnme	Sa	Sampling Time	Time	Total Fl	Total Fluoride as F
Sample	Sample Pump Initial Final	Initial	Final	Elapsed	Pump	Stack	Ambient	Ambient	Normal Initial Final	Initial	Final	Elapsed	Sample	Sample Concentration
Ref	Ref Number				Factor			Litres	Litres			Minutes		mg/Nm3
Baromet	Barometric Pressure	نة	994 mb	mp										
G10273	271	271 182012 203686	203686	21674	0.73	10	6	15.9	15.1	10:11 12:00	12:00	109	\$	< 0.33
G10276	G10276 Rinse Solution	tion											15.7	1.04
											Total R	Total Rinse + 1/2 Detection limit	ection limit	1.21
G10274	436	436 92740	123090	30350	09.0	10	6	18.3	17.4	10:11	12:00	109	\$	< 0.29
G10277	Rinse Solution	tion											24.8	1.43
											Total R	Total Rinse + 1/2 Detection limit	ection limit	1.57
G10275	Control												<5>	
												Ó	Overall Mean	an 1.39

Pitot	Flow Mea	sureme	ents		Aspen I	Environmen	tal Ltd	UKAS INTERNACE
Client: Address:	Wessex Crystal Brierley Hill	22		Time & Date: Operator: Job Number:		07/11/2013 (09:3 GB + TG 1121	0)	
				Location:		Main Exhaust		
Details of	Duct			Absolute Atmo	spheric Pres	sure (millibars)		
Duct Shap Dimension Area: sq	/ Diameter: (cr	Vertical n)	Circular 34 0.09	Initial: Final: Mean:	Instrument 996 996	Correction -2 -2	994 994 994	
Pitot Tube Position:	Distance into l % Diameter	Duct cm	Axis 1: Velocity Pressure Pv Pascals	Static Pressure Ps Pascals	Duct Temp ° Celsius	Axis 2: Velocity Pressure Pv Pascals	Static Pressure Ps Pascals	Duct Temp ° Celsius
1	1.9	0.6	54	-96	10	60	-94	10
2	7.7	2.6	52	-95	10	58	-98	10
3	15.3	5.2	50	-96	10	56	-94	10
4	21.7	7.4	55	-97	10	56	-96	10
5	36.1	12.3	54	-96	10	54	-94	10
6	63.9	21.7	54	-98	10	55	-96	10
7	78.3	26.6	52	-100	10	56	-98	10
8	84.7	28.8	54	-100	10	60	-98	10
9	92.3	31.4	50	-96	10	64	-100	10
10	98.1	33.4	42	-98	10	60	-98	10
	RMS	& Means:	51.83	-97.2	10	57.97	-96.6	10
Mean Pv (Pascals)	11 11 11	54.90	Temp Reader	73	Mean T in K (°C	+ 273)	283
Static Pres	sure (Pa)		-96.9	Pitot Tube & M	Ianometer	472 & 501	K Factor	1.03
Duct Velo	city (V) @ Temp	erature (T)	in metres p	oer second				9.76
Duct Velo	city (V) @ 2731	K, 1013mb,	in metres p	er second				9.24
Duct Volu	me Flow @ T in	cubic metre	es per secon	d				0.89
Duct Volu	ne Flow @ 2731	ζ, 1013mb,	in cubic met	tres per second				0.84
Duct Volu	me Flow @ 2731	ζ, 1013mb,	in cubic fee	t per minute				1778
	ne Flow @ Ten							1878

Index 7	Aspen Lilvii oiiiileiilai Lu	Ullillell	ומו דווו			Sucet No:					Cener	al Sam	General Sampling Data Form	a Form
Location & Drawing	¿ Drawing						,	Location						
Werder	Werder Griff.					Date 7	/11/13	Time	10.00					
0	2					Barometric Pressure	Pressure	qm	966					
2	dey till					Temperature ° C	re ° C	Exhaust		120	De 91			
								Ambient	10000	300				
								Gas Meter						
Pitot Tube	Pitot Tube Traverses (Measurements in Pa)	Measureme	nts in Pa)		Stack Dime	Stack Dimensions (cm) & Aspect	& Aspect	34cm	Circ Ve	Pert A		Aspen Job Number	Vumber	
Position	Time	1	2	3	4	3	9		8	6	10	Mean	Notes	
Pv	08 30	54	32	50	55	54	NA	25	200	0	44		1	
Ps		-96	-95	76-	181	76-	29-	00)-	100	76-	26-		1	
Т		2	0	0	0)	0	0	0	0	1	0		72	
Angle														
Pv		000	5 8	20	26	V	10	20	00	to	2		Is the SiGel >50 % Fresh W	% Fresh W
Ps		16-	861	161	18-	76-1	76-	198	26-	Tool	201		Stack Gas Homogeneity	Q(M vision
Т		0	0	0	0	0	9	0	0)	0	0			
Angle														
Flow @ Ambient	nbient	m/s	m / s Sampling Flow	low	L/min	L/min Tip Diameter	r M/kz		Pitot Tube &	mm Pitot Tube & Manometer 472	er 472	71	Equipment & Blank	lank
Sample	Position	T	Time	Gas Meter	r / Counter	Vacuum %	Vacuum % Sampling Points	oints				сш	N/A	
Reference		Initial	Final	Initial	Final	< 2	Comments							Pump
6				-		,	0							Flowmeter
177		10	1500	182012	203686	11	of Freeze	N	75					Gasmeter
P436		10.1	12.00	03120	123090	1								Gas Temp
		-		-\										Silica Gel
														Thermocouple
														Field Blank
													Operator	itor
													5	
							663/6	(2004)	Apr. talo	Agital Acid Dipping Lines	Line ELV	V . 2 my/m3	Normal	Flow
									Still 6"	Still balt dipping 6.10	es ELV'S			Vm/s
										2734	4 1013 ub)	28.0	Nm3/5

Test Certificate

Date 22/11/2013

Client Aspen Environmental Ltd

25A Church Street Uttoxeter Staffordshire ST14 8AG Order No.

1765 **WK13-7178**

Certificate No. leaue No.

1

ontact Dr Geoff Buck

3 tubes for fluoride

Date Received

13/11/2013

Technique IC

Sample No.	767903	G10273	Method
Fluoride		<5 µg	C27(U)
Sample No.	787904	G10274	Method
Fluoride		<5 μg	C27(U)
Sample No.	767905	G10275	Method
Fluoride		<5 µg	C27(U)

Test Certificate

Date 22/11/2013

Client Aspen Environmental Ltd Certificate No. WK13-7178 lacue No. 1

Tested By Nicholas Lynch Date 22/11/2013

Approved By CONFIDENTIAL Data 22/11/2013

Laboratory Manager

Joanne Dewhurst

For and on authority of RPS Laboratories Ltd.

Method Symbols (II) Analysis is UKAS Accredited

(N) A nalpois is not UKAS Accredited.
Concentration values (mg/m3 and ppm) are calculated on the basis of information provided by the customer.

Results stated as initialize retaining to the sample volume.

RPS Laboratories terms and conditions apply - a copy is available on request.

Analysis carried out on samples 'as received'

This document may not be reproduced other than in full, except with the written approval of the issuing laboratory.

Paga 2 of 2

Test Certificate

Date 20/11/2013

Aspan Environmental Ltd Client

25A Church Street Staffordshire ST14 8AG

Order No.

1765

Certificate No.

WK13-7179

leeue No.

1

Dr Geoff Buck 13/11/2013 IC 2 solutions for fluorida Technique

<u>Parameter</u>	Analysis Method	<u>Accreditation</u>	Method L OD	Uncertainty
Fluoride	C27	UKAS	0.05ug/ml	7.00%

Sample No.	767906	G10276		Method	
Fluoride		1.21 µg/ml	13 ml	C27(U)	
Sample No.	767907	G10277		Method	
Fluoride		1.91 µg/ml	13 ml	C27(U)	

Test Certificate

Date 20/11/2013

Aspen Environmental Ltd WK13-7178 Certificate No. 1 leeus No. Nicholas Lynch 20/11/2013 Tested By Date CONFIDENTIAL Approved By 20/11/2013 Joanna Dewhurst Laboratory Manager For and on authority of RPS Laboratories Ltd. (U) A marks is UKAS Accredited Method Symbols (N) A malysis is not UKAS Accredited Concentration values (mg/m3 and ppm) are calculated on the basis of information provided by the customer. Results stated as inline retaining to the sample volume. Analysis carried out on samples 'as received'

This document may not be reproduced other than in full, except with the written approval of the issuing laboratory.

RPS Laboratories terms and conditions apply - a copy is available on request.

Paga 2 of 2

Appendix 3: Uncertainty Calculations

Uncertainty for HCl Sampling to EN 13649: 2002 Aspen Environmental Ltd

Uncertainty for a series of duplicate measurements of HCl

data from J.990 Thyssen Krupp Ltd

sd 0.141 mean 6.88 = ± 2.06 %

double to allow for less good data (& ? absolute accuracy & standards)

double to 95 %

± 8.24

Expanded Result = ±

8.20%

continuous process = no change in humidity

v little change in temperature

low flow pumps with counters, so not identical flows, but results divided by volumes (Aspen bubble flow meter cal)

Laboratories don't provide uncertainty estimates on analytical results